Metamath Proof Explorer


Theorem iswrdb

Description: A word over an alphabet is a function from an open range of nonnegative integers (of length equal to the length of the word) into the alphabet. (Contributed by Alexander van der Vekens, 30-Jul-2018)

Ref Expression
Assertion iswrdb WWordSW:0..^WS

Proof

Step Hyp Ref Expression
1 wrdf WWordSW:0..^WS
2 iswrdi W:0..^WSWWordS
3 1 2 impbii WWordSW:0..^WS