Metamath Proof Explorer


Theorem iundom

Description: An upper bound for the cardinality of an indexed union. C depends on x and should be thought of as C ( x ) . (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion iundom A V x A C B x A C A × B

Proof

Step Hyp Ref Expression
1 eqid x A x × C = x A x × C
2 simpl A V x A C B A V
3 ovex B C V
4 3 rgenw x A B C V
5 iunexg A V x A B C V x A B C V
6 2 4 5 sylancl A V x A C B x A B C V
7 numth3 x A B C V x A B C dom card
8 6 7 syl A V x A C B x A B C dom card
9 numacn A V x A B C dom card x A B C AC _ A
10 2 8 9 sylc A V x A C B x A B C AC _ A
11 simpr A V x A C B x A C B
12 reldom Rel
13 12 brrelex1i C B C V
14 13 ralimi x A C B x A C V
15 iunexg A V x A C V x A C V
16 14 15 sylan2 A V x A C B x A C V
17 1 10 11 iundom2g A V x A C B x A x × C A × B
18 12 brrelex2i x A x × C A × B A × B V
19 numth3 A × B V A × B dom card
20 17 18 19 3syl A V x A C B A × B dom card
21 numacn x A C V A × B dom card A × B AC _ x A C
22 16 20 21 sylc A V x A C B A × B AC _ x A C
23 1 10 11 22 iundomg A V x A C B x A C A × B