Metamath Proof Explorer


Theorem iundomg

Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses iunfo.1 T=xAx×B
iundomg.2 φxACBAC_A
iundomg.3 φxABC
iundomg.4 φA×CAC_xAB
Assertion iundomg φxABA×C

Proof

Step Hyp Ref Expression
1 iunfo.1 T=xAx×B
2 iundomg.2 φxACBAC_A
3 iundomg.3 φxABC
4 iundomg.4 φA×CAC_xAB
5 1 2 3 iundom2g φTA×C
6 acndom2 TA×CA×CAC_xABTAC_xAB
7 5 4 6 sylc φTAC_xAB
8 1 iunfo 2ndT:TontoxAB
9 fodomacn TAC_xAB2ndT:TontoxABxABT
10 7 8 9 mpisyl φxABT
11 domtr xABTTA×CxABA×C
12 10 5 11 syl2anc φxABA×C