Metamath Proof Explorer


Theorem iuneq0

Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Assertion iuneq0 x A B = x A B =

Proof

Step Hyp Ref Expression
1 iunss x A B x A B
2 ss0b x A B x A B =
3 ss0b B B =
4 3 ralbii x A B x A B =
5 1 2 4 3bitr3ri x A B = x A B =