Metamath Proof Explorer


Theorem iuneq0

Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Assertion iuneq0
|- ( A. x e. A B = (/) <-> U_ x e. A B = (/) )

Proof

Step Hyp Ref Expression
1 iunss
 |-  ( U_ x e. A B C_ (/) <-> A. x e. A B C_ (/) )
2 ss0b
 |-  ( U_ x e. A B C_ (/) <-> U_ x e. A B = (/) )
3 ss0b
 |-  ( B C_ (/) <-> B = (/) )
4 3 ralbii
 |-  ( A. x e. A B C_ (/) <-> A. x e. A B = (/) )
5 1 2 4 3bitr3ri
 |-  ( A. x e. A B = (/) <-> U_ x e. A B = (/) )