Metamath Proof Explorer


Theorem iuneq0

Description: An indexed union is empty iff all indexed classes are empty. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Assertion iuneq0 ( ∀ 𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅ )

Proof

Step Hyp Ref Expression
1 iunss ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀ 𝑥𝐴 𝐵 ⊆ ∅ )
2 ss0b ( 𝑥𝐴 𝐵 ⊆ ∅ ↔ 𝑥𝐴 𝐵 = ∅ )
3 ss0b ( 𝐵 ⊆ ∅ ↔ 𝐵 = ∅ )
4 3 ralbii ( ∀ 𝑥𝐴 𝐵 ⊆ ∅ ↔ ∀ 𝑥𝐴 𝐵 = ∅ )
5 1 2 4 3bitr3ri ( ∀ 𝑥𝐴 𝐵 = ∅ ↔ 𝑥𝐴 𝐵 = ∅ )