Metamath Proof Explorer


Theorem iineq0

Description: An indexed intersection is empty if one of the intersected classes is empty. (Contributed by Zhi Wang, 30-Oct-2025)

Ref Expression
Assertion iineq0 ( ∃ 𝑥𝐴 𝐵 = ∅ → 𝑥𝐴 𝐵 = ∅ )

Proof

Step Hyp Ref Expression
1 nel02 ( 𝐵 = ∅ → ¬ 𝑦𝐵 )
2 1 reximi ( ∃ 𝑥𝐴 𝐵 = ∅ → ∃ 𝑥𝐴 ¬ 𝑦𝐵 )
3 rexnal ( ∃ 𝑥𝐴 ¬ 𝑦𝐵 ↔ ¬ ∀ 𝑥𝐴 𝑦𝐵 )
4 2 3 sylib ( ∃ 𝑥𝐴 𝐵 = ∅ → ¬ ∀ 𝑥𝐴 𝑦𝐵 )
5 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 ) )
6 5 elv ( 𝑦 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑦𝐵 )
7 4 6 sylnibr ( ∃ 𝑥𝐴 𝐵 = ∅ → ¬ 𝑦 𝑥𝐴 𝐵 )
8 7 eq0rdv ( ∃ 𝑥𝐴 𝐵 = ∅ → 𝑥𝐴 𝐵 = ∅ )