Metamath Proof Explorer


Theorem iunlub

Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1 ( 𝜑𝑋𝐴 )
iunlub.2 ( ( 𝜑𝑥 = 𝑋 ) → 𝐵 = 𝐶 )
iunlub.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion iunlub ( 𝜑 𝑥𝐴 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 iunlub.1 ( 𝜑𝑋𝐴 )
2 iunlub.2 ( ( 𝜑𝑥 = 𝑋 ) → 𝐵 = 𝐶 )
3 iunlub.3 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
4 3 iunssd ( 𝜑 𝑥𝐴 𝐵𝐶 )
5 2 sseq2d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝐶𝐵𝐶𝐶 ) )
6 ssidd ( 𝜑𝐶𝐶 )
7 1 5 6 rspcedvd ( 𝜑 → ∃ 𝑥𝐴 𝐶𝐵 )
8 ssiun ( ∃ 𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵 )
9 7 8 syl ( 𝜑𝐶 𝑥𝐴 𝐵 )
10 4 9 eqssd ( 𝜑 𝑥𝐴 𝐵 = 𝐶 )