Description: The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunlub.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| iunlub.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝐵 = 𝐶 ) | ||
| iinglb.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ⊆ 𝐵 ) | ||
| Assertion | iinglb | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunlub.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 2 | iunlub.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝐵 = 𝐶 ) | |
| 3 | iinglb.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ⊆ 𝐵 ) | |
| 4 | 2 | sseq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐵 ⊆ 𝐶 ↔ 𝐶 ⊆ 𝐶 ) ) |
| 5 | ssidd | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐶 ) | |
| 6 | 1 4 5 | rspcedvd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 7 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 9 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |
| 10 | ssiin | ⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝜑 → 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 12 | 8 11 | eqssd | ⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |