Metamath Proof Explorer


Theorem iinglb

Description: The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1 ( 𝜑𝑋𝐴 )
iunlub.2 ( ( 𝜑𝑥 = 𝑋 ) → 𝐵 = 𝐶 )
iinglb.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
Assertion iinglb ( 𝜑 𝑥𝐴 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 iunlub.1 ( 𝜑𝑋𝐴 )
2 iunlub.2 ( ( 𝜑𝑥 = 𝑋 ) → 𝐵 = 𝐶 )
3 iinglb.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
4 2 sseq1d ( ( 𝜑𝑥 = 𝑋 ) → ( 𝐵𝐶𝐶𝐶 ) )
5 ssidd ( 𝜑𝐶𝐶 )
6 1 4 5 rspcedvd ( 𝜑 → ∃ 𝑥𝐴 𝐵𝐶 )
7 iinss ( ∃ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶 )
8 6 7 syl ( 𝜑 𝑥𝐴 𝐵𝐶 )
9 3 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐶𝐵 )
10 ssiin ( 𝐶 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝐶𝐵 )
11 9 10 sylibr ( 𝜑𝐶 𝑥𝐴 𝐵 )
12 8 11 eqssd ( 𝜑 𝑥𝐴 𝐵 = 𝐶 )