| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunlub.1 |
|- ( ph -> X e. A ) |
| 2 |
|
iunlub.2 |
|- ( ( ph /\ x = X ) -> B = C ) |
| 3 |
|
iinglb.3 |
|- ( ( ph /\ x e. A ) -> C C_ B ) |
| 4 |
2
|
sseq1d |
|- ( ( ph /\ x = X ) -> ( B C_ C <-> C C_ C ) ) |
| 5 |
|
ssidd |
|- ( ph -> C C_ C ) |
| 6 |
1 4 5
|
rspcedvd |
|- ( ph -> E. x e. A B C_ C ) |
| 7 |
|
iinss |
|- ( E. x e. A B C_ C -> |^|_ x e. A B C_ C ) |
| 8 |
6 7
|
syl |
|- ( ph -> |^|_ x e. A B C_ C ) |
| 9 |
3
|
ralrimiva |
|- ( ph -> A. x e. A C C_ B ) |
| 10 |
|
ssiin |
|- ( C C_ |^|_ x e. A B <-> A. x e. A C C_ B ) |
| 11 |
9 10
|
sylibr |
|- ( ph -> C C_ |^|_ x e. A B ) |
| 12 |
8 11
|
eqssd |
|- ( ph -> |^|_ x e. A B = C ) |