Metamath Proof Explorer


Theorem iinglb

Description: The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1
|- ( ph -> X e. A )
iunlub.2
|- ( ( ph /\ x = X ) -> B = C )
iinglb.3
|- ( ( ph /\ x e. A ) -> C C_ B )
Assertion iinglb
|- ( ph -> |^|_ x e. A B = C )

Proof

Step Hyp Ref Expression
1 iunlub.1
 |-  ( ph -> X e. A )
2 iunlub.2
 |-  ( ( ph /\ x = X ) -> B = C )
3 iinglb.3
 |-  ( ( ph /\ x e. A ) -> C C_ B )
4 2 sseq1d
 |-  ( ( ph /\ x = X ) -> ( B C_ C <-> C C_ C ) )
5 ssidd
 |-  ( ph -> C C_ C )
6 1 4 5 rspcedvd
 |-  ( ph -> E. x e. A B C_ C )
7 iinss
 |-  ( E. x e. A B C_ C -> |^|_ x e. A B C_ C )
8 6 7 syl
 |-  ( ph -> |^|_ x e. A B C_ C )
9 3 ralrimiva
 |-  ( ph -> A. x e. A C C_ B )
10 ssiin
 |-  ( C C_ |^|_ x e. A B <-> A. x e. A C C_ B )
11 9 10 sylibr
 |-  ( ph -> C C_ |^|_ x e. A B )
12 8 11 eqssd
 |-  ( ph -> |^|_ x e. A B = C )