Metamath Proof Explorer


Theorem iinglb

Description: The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1 φ X A
iunlub.2 φ x = X B = C
iinglb.3 φ x A C B
Assertion iinglb φ x A B = C

Proof

Step Hyp Ref Expression
1 iunlub.1 φ X A
2 iunlub.2 φ x = X B = C
3 iinglb.3 φ x A C B
4 2 sseq1d φ x = X B C C C
5 ssidd φ C C
6 1 4 5 rspcedvd φ x A B C
7 iinss x A B C x A B C
8 6 7 syl φ x A B C
9 3 ralrimiva φ x A C B
10 ssiin C x A B x A C B
11 9 10 sylibr φ C x A B
12 8 11 eqssd φ x A B = C