Metamath Proof Explorer


Theorem iunlub

Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1 φ X A
iunlub.2 φ x = X B = C
iunlub.3 φ x A B C
Assertion iunlub φ x A B = C

Proof

Step Hyp Ref Expression
1 iunlub.1 φ X A
2 iunlub.2 φ x = X B = C
3 iunlub.3 φ x A B C
4 3 iunssd φ x A B C
5 2 sseq2d φ x = X C B C C
6 ssidd φ C C
7 1 5 6 rspcedvd φ x A C B
8 ssiun x A C B C x A B
9 7 8 syl φ C x A B
10 4 9 eqssd φ x A B = C