Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunlub.1 | |- ( ph -> X e. A ) |
|
| iunlub.2 | |- ( ( ph /\ x = X ) -> B = C ) |
||
| iunlub.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
||
| Assertion | iunlub | |- ( ph -> U_ x e. A B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunlub.1 | |- ( ph -> X e. A ) |
|
| 2 | iunlub.2 | |- ( ( ph /\ x = X ) -> B = C ) |
|
| 3 | iunlub.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
| 4 | 3 | iunssd | |- ( ph -> U_ x e. A B C_ C ) |
| 5 | 2 | sseq2d | |- ( ( ph /\ x = X ) -> ( C C_ B <-> C C_ C ) ) |
| 6 | ssidd | |- ( ph -> C C_ C ) |
|
| 7 | 1 5 6 | rspcedvd | |- ( ph -> E. x e. A C C_ B ) |
| 8 | ssiun | |- ( E. x e. A C C_ B -> C C_ U_ x e. A B ) |
|
| 9 | 7 8 | syl | |- ( ph -> C C_ U_ x e. A B ) |
| 10 | 4 9 | eqssd | |- ( ph -> U_ x e. A B = C ) |