Metamath Proof Explorer


Theorem iunlub

Description: The indexed union is the the lowest upper bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses iunlub.1
|- ( ph -> X e. A )
iunlub.2
|- ( ( ph /\ x = X ) -> B = C )
iunlub.3
|- ( ( ph /\ x e. A ) -> B C_ C )
Assertion iunlub
|- ( ph -> U_ x e. A B = C )

Proof

Step Hyp Ref Expression
1 iunlub.1
 |-  ( ph -> X e. A )
2 iunlub.2
 |-  ( ( ph /\ x = X ) -> B = C )
3 iunlub.3
 |-  ( ( ph /\ x e. A ) -> B C_ C )
4 3 iunssd
 |-  ( ph -> U_ x e. A B C_ C )
5 2 sseq2d
 |-  ( ( ph /\ x = X ) -> ( C C_ B <-> C C_ C ) )
6 ssidd
 |-  ( ph -> C C_ C )
7 1 5 6 rspcedvd
 |-  ( ph -> E. x e. A C C_ B )
8 ssiun
 |-  ( E. x e. A C C_ B -> C C_ U_ x e. A B )
9 7 8 syl
 |-  ( ph -> C C_ U_ x e. A B )
10 4 9 eqssd
 |-  ( ph -> U_ x e. A B = C )