Metamath Proof Explorer


Theorem iuneq1

Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iuneq1 A=BxAC=xBC

Proof

Step Hyp Ref Expression
1 iunss1 ABxACxBC
2 iunss1 BAxBCxAC
3 1 2 anim12i ABBAxACxBCxBCxAC
4 eqss A=BABBA
5 eqss xAC=xBCxACxBCxBCxAC
6 3 4 5 3imtr4i A=BxAC=xBC