Metamath Proof Explorer


Theorem iuneq12f

Description: Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses iuneq12f.1 _ x A
iuneq12f.2 _ x B
Assertion iuneq12f A = B x A C = D x A C = x B D

Proof

Step Hyp Ref Expression
1 iuneq12f.1 _ x A
2 iuneq12f.2 _ x B
3 iuneq2 x A C = D x A C = x A D
4 1 2 iuneq2f A = B x A D = x B D
5 3 4 sylan9eqr A = B x A C = D x A C = x B D