Metamath Proof Explorer


Theorem iunid

Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005) (Proof shortened by SN, 15-Jan-2025)

Ref Expression
Assertion iunid xAx=A

Proof

Step Hyp Ref Expression
1 df-iun xAx=y|xAyx
2 clel5 yAxAy=x
3 velsn yxy=x
4 3 rexbii xAyxxAy=x
5 2 4 bitr4i yAxAyx
6 5 eqabi A=y|xAyx
7 1 6 eqtr4i xAx=A