Metamath Proof Explorer


Theorem iunidOLD

Description: Obsolete version of iunid as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion iunidOLD xAx=A

Proof

Step Hyp Ref Expression
1 df-sn x=y|y=x
2 equcom y=xx=y
3 2 abbii y|y=x=y|x=y
4 1 3 eqtri x=y|x=y
5 4 a1i xAx=y|x=y
6 5 iuneq2i xAx=xAy|x=y
7 iunab xAy|x=y=y|xAx=y
8 risset yAxAx=y
9 8 abbii y|yA=y|xAx=y
10 abid2 y|yA=A
11 7 9 10 3eqtr2i xAy|x=y=A
12 6 11 eqtri xAx=A