Metamath Proof Explorer


Theorem iunab

Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004)

Ref Expression
Assertion iunab xAy|φ=y|xAφ

Proof

Step Hyp Ref Expression
1 nfcv _yA
2 nfab1 _yy|φ
3 1 2 nfiun _yxAy|φ
4 nfab1 _yy|xAφ
5 3 4 cleqf xAy|φ=y|xAφyyxAy|φyy|xAφ
6 abid yy|φφ
7 6 rexbii xAyy|φxAφ
8 eliun yxAy|φxAyy|φ
9 abid yy|xAφxAφ
10 7 8 9 3bitr4i yxAy|φyy|xAφ
11 5 10 mpgbir xAy|φ=y|xAφ