| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sn | ⊢ { 𝑥 }  =  { 𝑦  ∣  𝑦  =  𝑥 } | 
						
							| 2 |  | equcom | ⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 ) | 
						
							| 3 | 2 | abbii | ⊢ { 𝑦  ∣  𝑦  =  𝑥 }  =  { 𝑦  ∣  𝑥  =  𝑦 } | 
						
							| 4 | 1 3 | eqtri | ⊢ { 𝑥 }  =  { 𝑦  ∣  𝑥  =  𝑦 } | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  { 𝑥 }  =  { 𝑦  ∣  𝑥  =  𝑦 } ) | 
						
							| 6 | 5 | iuneq2i | ⊢ ∪  𝑥  ∈  𝐴 { 𝑥 }  =  ∪  𝑥  ∈  𝐴 { 𝑦  ∣  𝑥  =  𝑦 } | 
						
							| 7 |  | iunab | ⊢ ∪  𝑥  ∈  𝐴 { 𝑦  ∣  𝑥  =  𝑦 }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑥  =  𝑦 } | 
						
							| 8 |  | risset | ⊢ ( 𝑦  ∈  𝐴  ↔  ∃ 𝑥  ∈  𝐴 𝑥  =  𝑦 ) | 
						
							| 9 | 8 | abbii | ⊢ { 𝑦  ∣  𝑦  ∈  𝐴 }  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑥  =  𝑦 } | 
						
							| 10 |  | abid2 | ⊢ { 𝑦  ∣  𝑦  ∈  𝐴 }  =  𝐴 | 
						
							| 11 | 7 9 10 | 3eqtr2i | ⊢ ∪  𝑥  ∈  𝐴 { 𝑦  ∣  𝑥  =  𝑦 }  =  𝐴 | 
						
							| 12 | 6 11 | eqtri | ⊢ ∪  𝑥  ∈  𝐴 { 𝑥 }  =  𝐴 |