Metamath Proof Explorer


Theorem iunsn

Description: Indexed union of a singleton. Compare dfiun2 and rnmpt . (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Assertion iunsn xAB=y|xAy=B

Proof

Step Hyp Ref Expression
1 df-iun xAB=y|xAyB
2 velsn yBy=B
3 2 rexbii xAyBxAy=B
4 3 abbii y|xAyB=y|xAy=B
5 1 4 eqtri xAB=y|xAy=B