Metamath Proof Explorer


Theorem iunsuc

Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses iunsuc.1 AV
iunsuc.2 x=AB=C
Assertion iunsuc xsucAB=xABC

Proof

Step Hyp Ref Expression
1 iunsuc.1 AV
2 iunsuc.2 x=AB=C
3 df-suc sucA=AA
4 iuneq1 sucA=AAxsucAB=xAAB
5 3 4 ax-mp xsucAB=xAAB
6 iunxun xAAB=xABxAB
7 1 2 iunxsn xAB=C
8 7 uneq2i xABxAB=xABC
9 5 6 8 3eqtri xsucAB=xABC