Metamath Proof Explorer


Theorem ixpeq2dva

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dva.1 φxAB=C
Assertion ixpeq2dva φxAB=xAC

Proof

Step Hyp Ref Expression
1 ixpeq2dva.1 φxAB=C
2 1 ralrimiva φxAB=C
3 ixpeq2 xAB=CxAB=xAC
4 2 3 syl φxAB=xAC