Metamath Proof Explorer


Theorem ixxssxr

Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014)

Ref Expression
Hypothesis ixx.1 O=x*,y*z*|xRzzSy
Assertion ixxssxr AOB*

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 df-ov AOB=OAB
3 1 ixxf O:*×*𝒫*
4 0elpw 𝒫*
5 3 4 f0cli OAB𝒫*
6 2 5 eqeltri AOB𝒫*
7 ovex AOBV
8 7 elpw AOB𝒫*AOB*
9 6 8 mpbi AOB*