Metamath Proof Explorer


Theorem ixxval

Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 O=x*,y*z*|xRzzSy
Assertion ixxval A*B*AOB=z*|ARzzSB

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 breq1 x=AxRzARz
3 2 anbi1d x=AxRzzSyARzzSy
4 3 rabbidv x=Az*|xRzzSy=z*|ARzzSy
5 breq2 y=BzSyzSB
6 5 anbi2d y=BARzzSyARzzSB
7 6 rabbidv y=Bz*|ARzzSy=z*|ARzzSB
8 xrex *V
9 8 rabex z*|ARzzSBV
10 4 7 1 9 ovmpo A*B*AOB=z*|ARzzSB