Metamath Proof Explorer


Theorem jccir

Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i . (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by AV, 20-Aug-2019)

Ref Expression
Hypotheses jccir.1 φψ
jccir.2 ψχ
Assertion jccir φψχ

Proof

Step Hyp Ref Expression
1 jccir.1 φψ
2 jccir.2 ψχ
3 1 2 syl φχ
4 1 3 jca φψχ