Metamath Proof Explorer


Theorem jctl

Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 24-Oct-2012)

Ref Expression
Hypothesis jctl.1 ψ
Assertion jctl φψφ

Proof

Step Hyp Ref Expression
1 jctl.1 ψ
2 id φφ
3 2 1 jctil φψφ