Metamath Proof Explorer


Theorem jm2.27dlem3

Description: Lemma for rmydioph . Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypothesis jm2.27dlem3.1 A
Assertion jm2.27dlem3 A 1 A

Proof

Step Hyp Ref Expression
1 jm2.27dlem3.1 A
2 elfz1end A A 1 A
3 1 2 mpbi A 1 A