Metamath Proof Explorer
Description: Lemma for rmydioph . Infer membership of the endpoint of a range.
(Contributed by Stefan O'Rear, 11-Oct-2014)
|
|
Ref |
Expression |
|
Hypothesis |
jm2.27dlem3.1 |
|
|
Assertion |
jm2.27dlem3 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jm2.27dlem3.1 |
|
| 2 |
|
elfz1end |
|
| 3 |
1 2
|
mpbi |
|