Metamath Proof Explorer
		
		
		
		Description:  Lemma for rmydioph .  Infer membership of the endpoint of a range.
       (Contributed by Stefan O'Rear, 11-Oct-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | jm2.27dlem3.1 | ⊢ 𝐴  ∈  ℕ | 
				
					|  | Assertion | jm2.27dlem3 | ⊢  𝐴  ∈  ( 1 ... 𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jm2.27dlem3.1 | ⊢ 𝐴  ∈  ℕ | 
						
							| 2 |  | elfz1end | ⊢ ( 𝐴  ∈  ℕ  ↔  𝐴  ∈  ( 1 ... 𝐴 ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ 𝐴  ∈  ( 1 ... 𝐴 ) |