Metamath Proof Explorer


Theorem jm2.27dlem3

Description: Lemma for rmydioph . Infer membership of the endpoint of a range. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypothesis jm2.27dlem3.1 𝐴 ∈ ℕ
Assertion jm2.27dlem3 𝐴 ∈ ( 1 ... 𝐴 )

Proof

Step Hyp Ref Expression
1 jm2.27dlem3.1 𝐴 ∈ ℕ
2 elfz1end ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) )
3 1 2 mpbi 𝐴 ∈ ( 1 ... 𝐴 )