Metamath Proof Explorer
Description: Lemma for rmydioph . Infer membership of the endpoint of a range.
(Contributed by Stefan O'Rear, 11-Oct-2014)
|
|
Ref |
Expression |
|
Hypothesis |
jm2.27dlem3.1 |
⊢ 𝐴 ∈ ℕ |
|
Assertion |
jm2.27dlem3 |
⊢ 𝐴 ∈ ( 1 ... 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27dlem3.1 |
⊢ 𝐴 ∈ ℕ |
2 |
|
elfz1end |
⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( 1 ... 𝐴 ) ) |
3 |
1 2
|
mpbi |
⊢ 𝐴 ∈ ( 1 ... 𝐴 ) |