Metamath Proof Explorer
		
		
		
		Description:  Lemma for rmydioph .  Infer NN -hood of large numbers.
       (Contributed by Stefan O'Rear, 11-Oct-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | jm2.27dlem3.1 | ⊢ 𝐴  ∈  ℕ | 
					
						|  |  | jm2.27dlem4.2 | ⊢ 𝐵  =  ( 𝐴  +  1 ) | 
				
					|  | Assertion | jm2.27dlem4 | ⊢  𝐵  ∈  ℕ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | jm2.27dlem3.1 | ⊢ 𝐴  ∈  ℕ | 
						
							| 2 |  | jm2.27dlem4.2 | ⊢ 𝐵  =  ( 𝐴  +  1 ) | 
						
							| 3 |  | peano2nn | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( 𝐴  +  1 )  ∈  ℕ | 
						
							| 5 | 2 4 | eqeltri | ⊢ 𝐵  ∈  ℕ |