Metamath Proof Explorer


Theorem jm2.27dlem4

Description: Lemma for rmydioph . Infer NN -hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses jm2.27dlem3.1 𝐴 ∈ ℕ
jm2.27dlem4.2 𝐵 = ( 𝐴 + 1 )
Assertion jm2.27dlem4 𝐵 ∈ ℕ

Proof

Step Hyp Ref Expression
1 jm2.27dlem3.1 𝐴 ∈ ℕ
2 jm2.27dlem4.2 𝐵 = ( 𝐴 + 1 )
3 peano2nn ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ )
4 1 3 ax-mp ( 𝐴 + 1 ) ∈ ℕ
5 2 4 eqeltri 𝐵 ∈ ℕ