Metamath Proof Explorer
Description: Lemma for rmydioph . Infer NN -hood of large numbers.
(Contributed by Stefan O'Rear, 11-Oct-2014)
|
|
Ref |
Expression |
|
Hypotheses |
jm2.27dlem3.1 |
⊢ 𝐴 ∈ ℕ |
|
|
jm2.27dlem4.2 |
⊢ 𝐵 = ( 𝐴 + 1 ) |
|
Assertion |
jm2.27dlem4 |
⊢ 𝐵 ∈ ℕ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27dlem3.1 |
⊢ 𝐴 ∈ ℕ |
2 |
|
jm2.27dlem4.2 |
⊢ 𝐵 = ( 𝐴 + 1 ) |
3 |
|
peano2nn |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |
4 |
1 3
|
ax-mp |
⊢ ( 𝐴 + 1 ) ∈ ℕ |
5 |
2 4
|
eqeltri |
⊢ 𝐵 ∈ ℕ |