Metamath Proof Explorer


Theorem jm2.27dlem4

Description: Lemma for rmydioph . Infer NN -hood of large numbers. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses jm2.27dlem3.1
|- A e. NN
jm2.27dlem4.2
|- B = ( A + 1 )
Assertion jm2.27dlem4
|- B e. NN

Proof

Step Hyp Ref Expression
1 jm2.27dlem3.1
 |-  A e. NN
2 jm2.27dlem4.2
 |-  B = ( A + 1 )
3 peano2nn
 |-  ( A e. NN -> ( A + 1 ) e. NN )
4 1 3 ax-mp
 |-  ( A + 1 ) e. NN
5 2 4 eqeltri
 |-  B e. NN