Description: Lemma for rmydioph . Used with sselii to infer membership of midpoints of range; jm2.27dlem2 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jm2.27dlem5.2 | |- B = ( A + 1 ) |
|
jm2.27dlem5.3 | |- ( 1 ... B ) C_ ( 1 ... C ) |
||
Assertion | jm2.27dlem5 | |- ( 1 ... A ) C_ ( 1 ... C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm2.27dlem5.2 | |- B = ( A + 1 ) |
|
2 | jm2.27dlem5.3 | |- ( 1 ... B ) C_ ( 1 ... C ) |
|
3 | fzssp1 | |- ( 1 ... A ) C_ ( 1 ... ( A + 1 ) ) |
|
4 | 1 | oveq2i | |- ( 1 ... B ) = ( 1 ... ( A + 1 ) ) |
5 | 3 4 | sseqtrri | |- ( 1 ... A ) C_ ( 1 ... B ) |
6 | 5 2 | sstri | |- ( 1 ... A ) C_ ( 1 ... C ) |