Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27dlem2.1 |
|- A e. ( 1 ... B ) |
2 |
|
jm2.27dlem2.2 |
|- C = ( B + 1 ) |
3 |
|
jm2.27dlem2.3 |
|- B e. NN |
4 |
|
elfzelz |
|- ( A e. ( 1 ... B ) -> A e. ZZ ) |
5 |
1 4
|
ax-mp |
|- A e. ZZ |
6 |
|
elfzle1 |
|- ( A e. ( 1 ... B ) -> 1 <_ A ) |
7 |
1 6
|
ax-mp |
|- 1 <_ A |
8 |
5
|
zrei |
|- A e. RR |
9 |
3
|
nnrei |
|- B e. RR |
10 |
|
elfzle2 |
|- ( A e. ( 1 ... B ) -> A <_ B ) |
11 |
1 10
|
ax-mp |
|- A <_ B |
12 |
|
letrp1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ ( B + 1 ) ) |
13 |
8 9 11 12
|
mp3an |
|- A <_ ( B + 1 ) |
14 |
13 2
|
breqtrri |
|- A <_ C |
15 |
|
1z |
|- 1 e. ZZ |
16 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
17 |
|
peano2z |
|- ( B e. ZZ -> ( B + 1 ) e. ZZ ) |
18 |
3 16 17
|
mp2b |
|- ( B + 1 ) e. ZZ |
19 |
2 18
|
eqeltri |
|- C e. ZZ |
20 |
|
elfz1 |
|- ( ( 1 e. ZZ /\ C e. ZZ ) -> ( A e. ( 1 ... C ) <-> ( A e. ZZ /\ 1 <_ A /\ A <_ C ) ) ) |
21 |
15 19 20
|
mp2an |
|- ( A e. ( 1 ... C ) <-> ( A e. ZZ /\ 1 <_ A /\ A <_ C ) ) |
22 |
5 7 14 21
|
mpbir3an |
|- A e. ( 1 ... C ) |