| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jm2.27dlem2.1 |
|- A e. ( 1 ... B ) |
| 2 |
|
jm2.27dlem2.2 |
|- C = ( B + 1 ) |
| 3 |
|
jm2.27dlem2.3 |
|- B e. NN |
| 4 |
|
elfzelz |
|- ( A e. ( 1 ... B ) -> A e. ZZ ) |
| 5 |
1 4
|
ax-mp |
|- A e. ZZ |
| 6 |
|
elfzle1 |
|- ( A e. ( 1 ... B ) -> 1 <_ A ) |
| 7 |
1 6
|
ax-mp |
|- 1 <_ A |
| 8 |
5
|
zrei |
|- A e. RR |
| 9 |
3
|
nnrei |
|- B e. RR |
| 10 |
|
elfzle2 |
|- ( A e. ( 1 ... B ) -> A <_ B ) |
| 11 |
1 10
|
ax-mp |
|- A <_ B |
| 12 |
|
letrp1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ ( B + 1 ) ) |
| 13 |
8 9 11 12
|
mp3an |
|- A <_ ( B + 1 ) |
| 14 |
13 2
|
breqtrri |
|- A <_ C |
| 15 |
|
1z |
|- 1 e. ZZ |
| 16 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 17 |
|
peano2z |
|- ( B e. ZZ -> ( B + 1 ) e. ZZ ) |
| 18 |
3 16 17
|
mp2b |
|- ( B + 1 ) e. ZZ |
| 19 |
2 18
|
eqeltri |
|- C e. ZZ |
| 20 |
|
elfz1 |
|- ( ( 1 e. ZZ /\ C e. ZZ ) -> ( A e. ( 1 ... C ) <-> ( A e. ZZ /\ 1 <_ A /\ A <_ C ) ) ) |
| 21 |
15 19 20
|
mp2an |
|- ( A e. ( 1 ... C ) <-> ( A e. ZZ /\ 1 <_ A /\ A <_ C ) ) |
| 22 |
5 7 14 21
|
mpbir3an |
|- A e. ( 1 ... C ) |