| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jm2.27dlem2.1 |
⊢ 𝐴 ∈ ( 1 ... 𝐵 ) |
| 2 |
|
jm2.27dlem2.2 |
⊢ 𝐶 = ( 𝐵 + 1 ) |
| 3 |
|
jm2.27dlem2.3 |
⊢ 𝐵 ∈ ℕ |
| 4 |
|
elfzelz |
⊢ ( 𝐴 ∈ ( 1 ... 𝐵 ) → 𝐴 ∈ ℤ ) |
| 5 |
1 4
|
ax-mp |
⊢ 𝐴 ∈ ℤ |
| 6 |
|
elfzle1 |
⊢ ( 𝐴 ∈ ( 1 ... 𝐵 ) → 1 ≤ 𝐴 ) |
| 7 |
1 6
|
ax-mp |
⊢ 1 ≤ 𝐴 |
| 8 |
5
|
zrei |
⊢ 𝐴 ∈ ℝ |
| 9 |
3
|
nnrei |
⊢ 𝐵 ∈ ℝ |
| 10 |
|
elfzle2 |
⊢ ( 𝐴 ∈ ( 1 ... 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 11 |
1 10
|
ax-mp |
⊢ 𝐴 ≤ 𝐵 |
| 12 |
|
letrp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) |
| 13 |
8 9 11 12
|
mp3an |
⊢ 𝐴 ≤ ( 𝐵 + 1 ) |
| 14 |
13 2
|
breqtrri |
⊢ 𝐴 ≤ 𝐶 |
| 15 |
|
1z |
⊢ 1 ∈ ℤ |
| 16 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 17 |
|
peano2z |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) ∈ ℤ ) |
| 18 |
3 16 17
|
mp2b |
⊢ ( 𝐵 + 1 ) ∈ ℤ |
| 19 |
2 18
|
eqeltri |
⊢ 𝐶 ∈ ℤ |
| 20 |
|
elfz1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 1 ... 𝐶 ) ↔ ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ) ) |
| 21 |
15 19 20
|
mp2an |
⊢ ( 𝐴 ∈ ( 1 ... 𝐶 ) ↔ ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶 ) ) |
| 22 |
5 7 14 21
|
mpbir3an |
⊢ 𝐴 ∈ ( 1 ... 𝐶 ) |