Description: Lemma for rmydioph . This theorem is used along with the next three to efficiently infer steps like 7 e. ( 1 ... ; 1 0 ) . (Contributed by Stefan O'Rear, 11-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jm2.27dlem2.1 | |
|
jm2.27dlem2.2 | |
||
jm2.27dlem2.3 | |
||
Assertion | jm2.27dlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm2.27dlem2.1 | |
|
2 | jm2.27dlem2.2 | |
|
3 | jm2.27dlem2.3 | |
|
4 | elfzelz | |
|
5 | 1 4 | ax-mp | |
6 | elfzle1 | |
|
7 | 1 6 | ax-mp | |
8 | 5 | zrei | |
9 | 3 | nnrei | |
10 | elfzle2 | |
|
11 | 1 10 | ax-mp | |
12 | letrp1 | |
|
13 | 8 9 11 12 | mp3an | |
14 | 13 2 | breqtrri | |
15 | 1z | |
|
16 | nnz | |
|
17 | peano2z | |
|
18 | 3 16 17 | mp2b | |
19 | 2 18 | eqeltri | |
20 | elfz1 | |
|
21 | 15 19 20 | mp2an | |
22 | 5 7 14 21 | mpbir3an | |