Metamath Proof Explorer


Theorem jm2.27dlem5

Description: Lemma for rmydioph . Used with sselii to infer membership of midpoints of range; jm2.27dlem2 is deprecated. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses jm2.27dlem5.2 B = A + 1
jm2.27dlem5.3 1 B 1 C
Assertion jm2.27dlem5 1 A 1 C

Proof

Step Hyp Ref Expression
1 jm2.27dlem5.2 B = A + 1
2 jm2.27dlem5.3 1 B 1 C
3 fzssp1 1 A 1 A + 1
4 1 oveq2i 1 B = 1 A + 1
5 3 4 sseqtrri 1 A 1 B
6 5 2 sstri 1 A 1 C