Metamath Proof Explorer


Theorem laut11

Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses laut1o.b B = Base K
laut1o.i I = LAut K
Assertion laut11 K V F I X B Y B F X = F Y X = Y

Proof

Step Hyp Ref Expression
1 laut1o.b B = Base K
2 laut1o.i I = LAut K
3 1 2 laut1o K V F I F : B 1-1 onto B
4 f1of1 F : B 1-1 onto B F : B 1-1 B
5 3 4 syl K V F I F : B 1-1 B
6 f1fveq F : B 1-1 B X B Y B F X = F Y X = Y
7 5 6 sylan K V F I X B Y B F X = F Y X = Y