Metamath Proof Explorer


Theorem laut11

Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses laut1o.b B=BaseK
laut1o.i I=LAutK
Assertion laut11 KVFIXBYBFX=FYX=Y

Proof

Step Hyp Ref Expression
1 laut1o.b B=BaseK
2 laut1o.i I=LAutK
3 1 2 laut1o KVFIF:B1-1 ontoB
4 f1of1 F:B1-1 ontoBF:B1-1B
5 3 4 syl KVFIF:B1-1B
6 f1fveq F:B1-1BXBYBFX=FYX=Y
7 5 6 sylan KVFIXBYBFX=FYX=Y