Metamath Proof Explorer


Theorem lbsss

Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lbsss.v V = Base W
lbsss.j J = LBasis W
Assertion lbsss B J B V

Proof

Step Hyp Ref Expression
1 lbsss.v V = Base W
2 lbsss.j J = LBasis W
3 elfvdm B LBasis W W dom LBasis
4 3 2 eleq2s B J W dom LBasis
5 eqid Scalar W = Scalar W
6 eqid W = W
7 eqid Base Scalar W = Base Scalar W
8 eqid LSpan W = LSpan W
9 eqid 0 Scalar W = 0 Scalar W
10 1 5 6 7 2 8 9 islbs W dom LBasis B J B V LSpan W B = V x B y Base Scalar W 0 Scalar W ¬ y W x LSpan W B x
11 4 10 syl B J B J B V LSpan W B = V x B y Base Scalar W 0 Scalar W ¬ y W x LSpan W B x
12 11 ibi B J B V LSpan W B = V x B y Base Scalar W 0 Scalar W ¬ y W x LSpan W B x
13 12 simp1d B J B V