Metamath Proof Explorer


Theorem lbsss

Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lbsss.v V=BaseW
lbsss.j J=LBasisW
Assertion lbsss BJBV

Proof

Step Hyp Ref Expression
1 lbsss.v V=BaseW
2 lbsss.j J=LBasisW
3 elfvdm BLBasisWWdomLBasis
4 3 2 eleq2s BJWdomLBasis
5 eqid ScalarW=ScalarW
6 eqid W=W
7 eqid BaseScalarW=BaseScalarW
8 eqid LSpanW=LSpanW
9 eqid 0ScalarW=0ScalarW
10 1 5 6 7 2 8 9 islbs WdomLBasisBJBVLSpanWB=VxByBaseScalarW0ScalarW¬yWxLSpanWBx
11 4 10 syl BJBJBVLSpanWB=VxByBaseScalarW0ScalarW¬yWxLSpanWBx
12 11 ibi BJBVLSpanWB=VxByBaseScalarW0ScalarW¬yWxLSpanWBx
13 12 simp1d BJBV