Metamath Proof Explorer


Theorem lcmn0cl

Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmn0cl MN¬M=0N=0MlcmN

Proof

Step Hyp Ref Expression
1 ssrab2 n|MnNn
2 lcmcllem MN¬M=0N=0MlcmNn|MnNn
3 1 2 sselid MN¬M=0N=0MlcmN