Metamath Proof Explorer


Theorem lcmn0val

Description: The value of the lcm operator when both operands are nonzero. (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmn0val MN¬M=0N=0MlcmN=supn|MnNn<

Proof

Step Hyp Ref Expression
1 lcmval MNMlcmN=ifM=0N=00supn|MnNn<
2 iffalse ¬M=0N=0ifM=0N=00supn|MnNn<=supn|MnNn<
3 1 2 sylan9eq MN¬M=0N=0MlcmN=supn|MnNn<