Metamath Proof Explorer


Theorem leat3

Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses leatom.b B=BaseK
leatom.l ˙=K
leatom.z 0˙=0.K
leatom.a A=AtomsK
Assertion leat3 KOPXBPAX˙PXAX=0˙

Proof

Step Hyp Ref Expression
1 leatom.b B=BaseK
2 leatom.l ˙=K
3 leatom.z 0˙=0.K
4 leatom.a A=AtomsK
5 1 2 3 4 leat KOPXBPAX˙PX=PX=0˙
6 simpl3 KOPXBPAX˙PPA
7 eleq1a PAX=PXA
8 6 7 syl KOPXBPAX˙PX=PXA
9 8 orim1d KOPXBPAX˙PX=PX=0˙XAX=0˙
10 5 9 mpd KOPXBPAX˙PXAX=0˙