| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leatom.b |
|- B = ( Base ` K ) |
| 2 |
|
leatom.l |
|- .<_ = ( le ` K ) |
| 3 |
|
leatom.z |
|- .0. = ( 0. ` K ) |
| 4 |
|
leatom.a |
|- A = ( Atoms ` K ) |
| 5 |
1 2 3 4
|
leat |
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P \/ X = .0. ) ) |
| 6 |
|
simpl3 |
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> P e. A ) |
| 7 |
|
eleq1a |
|- ( P e. A -> ( X = P -> X e. A ) ) |
| 8 |
6 7
|
syl |
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P -> X e. A ) ) |
| 9 |
8
|
orim1d |
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( ( X = P \/ X = .0. ) -> ( X e. A \/ X = .0. ) ) ) |
| 10 |
5 9
|
mpd |
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X e. A \/ X = .0. ) ) |