Metamath Proof Explorer


Theorem meetat

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)

Ref Expression
Hypotheses m.b
|- B = ( Base ` K )
m.m
|- ./\ = ( meet ` K )
m.z
|- .0. = ( 0. ` K )
m.a
|- A = ( Atoms ` K )
Assertion meetat
|- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) )

Proof

Step Hyp Ref Expression
1 m.b
 |-  B = ( Base ` K )
2 m.m
 |-  ./\ = ( meet ` K )
3 m.z
 |-  .0. = ( 0. ` K )
4 m.a
 |-  A = ( Atoms ` K )
5 ollat
 |-  ( K e. OL -> K e. Lat )
6 5 3ad2ant1
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> K e. Lat )
7 simp2
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> X e. B )
8 simp3
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> P e. A )
9 1 4 atbase
 |-  ( P e. A -> P e. B )
10 8 9 syl
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> P e. B )
11 eqid
 |-  ( le ` K ) = ( le ` K )
12 1 11 2 latmle2
 |-  ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X ./\ P ) ( le ` K ) P )
13 6 7 10 12 syl3anc
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> ( X ./\ P ) ( le ` K ) P )
14 olop
 |-  ( K e. OL -> K e. OP )
15 14 3ad2ant1
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> K e. OP )
16 1 2 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X ./\ P ) e. B )
17 6 7 10 16 syl3anc
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> ( X ./\ P ) e. B )
18 1 11 3 4 leatb
 |-  ( ( K e. OP /\ ( X ./\ P ) e. B /\ P e. A ) -> ( ( X ./\ P ) ( le ` K ) P <-> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) )
19 15 17 8 18 syl3anc
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) ( le ` K ) P <-> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) )
20 13 19 mpbid
 |-  ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) )