Metamath Proof Explorer


Theorem lediv2ad

Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
lediv2ad.3 φC
lediv2ad.4 φ0C
lediv2ad.5 φAB
Assertion lediv2ad φCBCA

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 lediv2ad.3 φC
4 lediv2ad.4 φ0C
5 lediv2ad.5 φAB
6 1 rpregt0d φA0<A
7 2 rpregt0d φB0<B
8 3 4 jca φC0C
9 lediv2a A0<AB0<BC0CABCBCA
10 6 7 8 5 9 syl31anc φCBCA