Metamath Proof Explorer


Theorem lemeet1

Description: A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetval2.b B=BaseK
meetval2.l ˙=K
meetval2.m ˙=meetK
meetval2.k φKV
meetval2.x φXB
meetval2.y φYB
meetlem.e φXYdom˙
Assertion lemeet1 φX˙Y˙X

Proof

Step Hyp Ref Expression
1 meetval2.b B=BaseK
2 meetval2.l ˙=K
3 meetval2.m ˙=meetK
4 meetval2.k φKV
5 meetval2.x φXB
6 meetval2.y φYB
7 meetlem.e φXYdom˙
8 1 2 3 4 5 6 7 meetlem φX˙Y˙XX˙Y˙YzBz˙Xz˙Yz˙X˙Y
9 8 simplld φX˙Y˙X