Metamath Proof Explorer


Theorem meetlem

Description: Lemma for meet properties. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetval2.b B=BaseK
meetval2.l ˙=K
meetval2.m ˙=meetK
meetval2.k φKV
meetval2.x φXB
meetval2.y φYB
meetlem.e φXYdom˙
Assertion meetlem φX˙Y˙XX˙Y˙YzBz˙Xz˙Yz˙X˙Y

Proof

Step Hyp Ref Expression
1 meetval2.b B=BaseK
2 meetval2.l ˙=K
3 meetval2.m ˙=meetK
4 meetval2.k φKV
5 meetval2.x φXB
6 meetval2.y φYB
7 meetlem.e φXYdom˙
8 1 2 3 4 5 6 7 meeteu φ∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x
9 riotasbc ∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x[˙ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x/x]˙x˙Xx˙YzBz˙Xz˙Yz˙x
10 8 9 syl φ[˙ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x/x]˙x˙Xx˙YzBz˙Xz˙Yz˙x
11 1 2 3 4 5 6 meetval2 φX˙Y=ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x
12 11 sbceq1d φ[˙X˙Y/x]˙x˙Xx˙YzBz˙Xz˙Yz˙x[˙ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x/x]˙x˙Xx˙YzBz˙Xz˙Yz˙x
13 10 12 mpbird φ[˙X˙Y/x]˙x˙Xx˙YzBz˙Xz˙Yz˙x
14 ovex X˙YV
15 breq1 x=X˙Yx˙XX˙Y˙X
16 breq1 x=X˙Yx˙YX˙Y˙Y
17 15 16 anbi12d x=X˙Yx˙Xx˙YX˙Y˙XX˙Y˙Y
18 breq2 x=X˙Yz˙xz˙X˙Y
19 18 imbi2d x=X˙Yz˙Xz˙Yz˙xz˙Xz˙Yz˙X˙Y
20 19 ralbidv x=X˙YzBz˙Xz˙Yz˙xzBz˙Xz˙Yz˙X˙Y
21 17 20 anbi12d x=X˙Yx˙Xx˙YzBz˙Xz˙Yz˙xX˙Y˙XX˙Y˙YzBz˙Xz˙Yz˙X˙Y
22 14 21 sbcie [˙X˙Y/x]˙x˙Xx˙YzBz˙Xz˙Yz˙xX˙Y˙XX˙Y˙YzBz˙Xz˙Yz˙X˙Y
23 13 22 sylib φX˙Y˙XX˙Y˙YzBz˙Xz˙Yz˙X˙Y