Metamath Proof Explorer


Theorem meetval2

Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011) (Revised by NM, 11-Sep-2018)

Ref Expression
Hypotheses meetval2.b B=BaseK
meetval2.l ˙=K
meetval2.m ˙=meetK
meetval2.k φKV
meetval2.x φXB
meetval2.y φYB
Assertion meetval2 φX˙Y=ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x

Proof

Step Hyp Ref Expression
1 meetval2.b B=BaseK
2 meetval2.l ˙=K
3 meetval2.m ˙=meetK
4 meetval2.k φKV
5 meetval2.x φXB
6 meetval2.y φYB
7 eqid glbK=glbK
8 7 3 4 5 6 meetval φX˙Y=glbKXY
9 biid yXYx˙yzByXYz˙yz˙xyXYx˙yzByXYz˙yz˙x
10 5 6 prssd φXYB
11 1 2 7 9 4 10 glbval φglbKXY=ιxB|yXYx˙yzByXYz˙yz˙x
12 1 2 3 4 5 6 meetval2lem XBYByXYx˙yzByXYz˙yz˙xx˙Xx˙YzBz˙Xz˙Yz˙x
13 12 riotabidv XBYBιxB|yXYx˙yzByXYz˙yz˙x=ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x
14 5 6 13 syl2anc φιxB|yXYx˙yzByXYz˙yz˙x=ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x
15 8 11 14 3eqtrd φX˙Y=ιxB|x˙Xx˙YzBz˙Xz˙Yz˙x