Metamath Proof Explorer


Theorem meetval2lem

Description: Lemma for meetval2 and meeteu . (Contributed by NM, 12-Sep-2018) TODO: combine this through meeteu into meetlem ?

Ref Expression
Hypotheses meetval2.b B=BaseK
meetval2.l ˙=K
meetval2.m ˙=meetK
meetval2.k φKV
meetval2.x φXB
meetval2.y φYB
Assertion meetval2lem XBYByXYx˙yzByXYz˙yz˙xx˙Xx˙YzBz˙Xz˙Yz˙x

Proof

Step Hyp Ref Expression
1 meetval2.b B=BaseK
2 meetval2.l ˙=K
3 meetval2.m ˙=meetK
4 meetval2.k φKV
5 meetval2.x φXB
6 meetval2.y φYB
7 breq2 y=Xx˙yx˙X
8 breq2 y=Yx˙yx˙Y
9 7 8 ralprg XBYByXYx˙yx˙Xx˙Y
10 breq2 y=Xz˙yz˙X
11 breq2 y=Yz˙yz˙Y
12 10 11 ralprg XBYByXYz˙yz˙Xz˙Y
13 12 imbi1d XBYByXYz˙yz˙xz˙Xz˙Yz˙x
14 13 ralbidv XBYBzByXYz˙yz˙xzBz˙Xz˙Yz˙x
15 9 14 anbi12d XBYByXYx˙yzByXYz˙yz˙xx˙Xx˙YzBz˙Xz˙Yz˙x