Metamath Proof Explorer


Theorem meeteu

Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetval2.b B=BaseK
meetval2.l ˙=K
meetval2.m ˙=meetK
meetval2.k φKV
meetval2.x φXB
meetval2.y φYB
meetlem.e φXYdom˙
Assertion meeteu φ∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x

Proof

Step Hyp Ref Expression
1 meetval2.b B=BaseK
2 meetval2.l ˙=K
3 meetval2.m ˙=meetK
4 meetval2.k φKV
5 meetval2.x φXB
6 meetval2.y φYB
7 meetlem.e φXYdom˙
8 eqid glbK=glbK
9 8 3 4 5 6 meetdef φXYdom˙XYdomglbK
10 biid yXYx˙yzByXYz˙yz˙xyXYx˙yzByXYz˙yz˙x
11 4 adantr φXYdomglbKKV
12 simpr φXYdomglbKXYdomglbK
13 1 2 8 10 11 12 glbeu φXYdomglbK∃!xByXYx˙yzByXYz˙yz˙x
14 13 ex φXYdomglbK∃!xByXYx˙yzByXYz˙yz˙x
15 1 2 3 4 5 6 meetval2lem XBYByXYx˙yzByXYz˙yz˙xx˙Xx˙YzBz˙Xz˙Yz˙x
16 5 6 15 syl2anc φyXYx˙yzByXYz˙yz˙xx˙Xx˙YzBz˙Xz˙Yz˙x
17 16 reubidv φ∃!xByXYx˙yzByXYz˙yz˙x∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x
18 14 17 sylibd φXYdomglbK∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x
19 9 18 sylbid φXYdom˙∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x
20 7 19 mpd φ∃!xBx˙Xx˙YzBz˙Xz˙Yz˙x