Metamath Proof Explorer


Theorem lidlss

Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses lidlss.b B=BaseW
lidlss.i I=LIdealW
Assertion lidlss UIUB

Proof

Step Hyp Ref Expression
1 lidlss.b B=BaseW
2 lidlss.i I=LIdealW
3 rlmbas BaseW=BaseringLModW
4 1 3 eqtri B=BaseringLModW
5 lidlval LIdealW=LSubSpringLModW
6 2 5 eqtri I=LSubSpringLModW
7 4 6 lssss UIUB